Modelling and Validation of Synthesis of Poly Lactic Acid Using an Alternative Energy Source through a Continuous Reactive Extrusion Process
نویسندگان
چکیده
PLA is one of the most promising bio-compostable and bio-degradable thermoplastic polymers made from renewable sources. PLA is generally produced by ring opening polymerization (ROP) of lactide using the metallic/bimetallic catalyst (Sn, Zn, and Al) or other organic catalysts in a suitable solvent. In this work, reactive extrusion experiments using stannous octoate Sn(Oct)2 and tri-phenyl phosphine (PPh)3 were considered to perform ROP of lactide. Ultrasound energy source was used for activating and/or boosting the polymerization as an alternative energy (AE) source. Ludovic® software, designed for simulation of the extrusion process, had to be modified in order to simulate the reactive extrusion of lactide and for the application of an AE source in an extruder. A mathematical model for the ROP of lactide reaction was developed to estimate the kinetics of the polymerization process. The isothermal curves generated through this model were then used by Ludovic software to simulate the “reactive” extrusion process of ROP of lactide. Results from the experiments and simulations were compared to validate the simulation methodology. It was observed that the application of an AE source boosts the polymerization of lactide monomers. However, it was also observed that the predicted residence time was shorter than the experimental one. There is potentially a case for reducing the residence time distribution (RTD) in Ludovic® due to the ‘liquid’ monomer flow in the extruder. Although this change in parameters resulted in validation of the simulation, it was concluded that further research is needed to validate this assumption.
منابع مشابه
Mathematical Modeling for Continuous Reactive Extrusion of Poly Lactic Acid formation by Ring Opening Polymerization Considering Metal/Organic Catalyst and Alternative Energies
PLA emerged as a promising polymer because of its property as a compostable, biodegradable thermoplastic made from renewable sources. PLA can be polymerized from monomers (Lactide or Lactic acid) obtained by fermentation processes from renewable sources such as corn starch or sugarcane. For PLA synthesis, ring opening polymerization (ROP) of Lactide monomer is one of the preferred methods. In t...
متن کاملLactic-based Novel Amine Ionic Liquid: Synthesis and Characterization of [DEA][Lac]
In this study, a novel amine ionic liquid “Diethanolamine Lactic” [DEA][Lac] was synthesized. The replacement of halogenated ion fluid was used as a modified methodology for the preparation of diethanolamine based on lactic acid. The ionic liquid was characterized using the Fourier transform infrared (FTIR) spectra and the nuclear magnetic resonance (NMR) spectroscopy. The changes in bands' wav...
متن کاملSynthesis and characterization of nHA-PLA composite coating on stainless steel by dip-coating process for biomedical applications
316L stainless steel is the most commonly used metallic material in the manufacture of orthopedic implants. To achive better properties metal implants often coated with biocomposites. A sol–gel method was used for coating of Poly lactic acid (PLA)/Hydroxyapatite nanopowder (nHA) on stainless steel 316L substrate. The X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) wer...
متن کاملNovel 175Yb-Poly (L-lactic acid) microspheres for transarterial radioembolization of unrespectable hepatocellular carcinoma
Novel biodegradable Poly (L-lactic acid) (PLLA) microspheres containing ytterbium were designed for intra-tumoral radiotherapy, especially for radioembolization. 175Yb possess both therapeutic beta and diagnostic gamma radiations. In this work, process to make ready radiomicrospheres 175Yb(acac)3-loaded PLLA for more consideration has been investigated. The radiomicrospheres were prepared with ...
متن کاملNovel 175Yb-Poly (L-lactic acid) microspheres for transarterial radioembolization of unrespectable hepatocellular carcinoma
Novel biodegradable Poly (L-lactic acid) (PLLA) microspheres containing ytterbium were designed for intra-tumoral radiotherapy, especially for radioembolization. 175Yb possess both therapeutic beta and diagnostic gamma radiations. In this work, process to make ready radiomicrospheres 175Yb(acac)3-loaded PLLA for more consideration has been investigated. The radiomicrospheres were prepared with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016